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Abstract

Binary outcome models are frequently used in the social sciences and eco-
nomics. However, such models are difficult to estimate with interdepen-
dent data structures, including spatial, temporal, and spatio-temporal au-
tocorrelation because jointly determined error terms in the reduced-form
specification are generally analytically intractable. To deal with this prob-
lem, simulation-based approaches have been proposed. However, these ap-
proaches (i) are computationally intensive and impractical for sizable datasets
commonly used in contemporary research, and (ii) rarely address temporal
interdependence. As a way forward, we demonstrate how to reduce the
computational burden significantly by (i) introducing analytically-tractable
pseudo maximum likelihood estimators (PMLE) for latent binary choice
models that exhibit interdependence across space and time and by (ii)
proposing an implementation strategy that increases computational effi-
ciency considerably. Monte Carlo experiments show that our estimators
recover the parameter values as good as commonly-used estimation alterna-
tives and require only a fraction of the computational cost.

1. Introduction

Modeling binary outcomes—such as war, regime transitions, or policy
adaption—poses considerable methodological challenges in the presence of
spatial and/or temporal autocorrelation resulting from interdependent out-
comes across and within units. The methodological difficulty stems from the
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likelihood function that involves an analytically intractable NT -dimensional
integral.1 Simulation-based estimation strategies including Gibbs sampling
[14] and recursive importance sampling (RIS) [4] have been proposed to
overcome this challenge. While these techniques promise to provide reliable
estimates of spatial, and more recently spatio-temporal interdependence [9],
they are computationally burdensome [see 6].2 As social scientists imple-
ment research designs at increasing resolutions (e.g., at the grid-cell level)
and with increasingly large datasets, simulation-based approaches quickly
become infeasible.

We provide a new estimator to address spatial, temporal, and spatio-
temporal forms of interdependence embedded in binary outcome data. We
build on a pseudo maximum likelihood estimator (PMLE) for binary spa-
tially autoregressive models proposed by Smirnov [15], and extend it to cases
of temporal and spatio-temporal interdependence. So far, only Franzese
et al.’s (2016) RIS estimator has addressed the spatio-temporal case. In
addition, we reduce the estimation costs by proposing an implementation
strategy that avoids direct matrix inversion (of large “interdependence multi-
pliers”), and instead relies on a combination of iterative gradient procedures
and approximations that yield an estimation algorithm with almost (only)
linear complexity in N .

Monte Carlo experiments demonstrate that the PMLE recovers the pa-
rameter values as good as commonly-used estimation alternatives—including
Bayes, GMM, RIS, and näıve probit—in a fraction of the time that simulation-
based methods require. Yet, our analyses also accentuate important method-
ological issues that await solutions in improving the two existing estimators
for spatio-temporal models (RIS and PMLE). First, both estimators gener-
ate seemingly biased standard errors. Second, we find that the performance
of the RIS estimator is sensitive to the choice of data generating process
(DGP). The conclusion section elaborates on these points.

2. Binary choice models with spatio-temporal interdependence

This section specifies a binary choice model with spatio-temporal in-
terdependence, for which we then develop a pseudo maximum likelihood
estimators. We focus on the spatio-temporal case, which is applicable to
cross-sectional-time-series data, noting that a purely spatial model for cross-

1Spatial probit is a special case where the marginal probability has a closed form but
the likelihood function requires an evaluation of a multivariate normal distribution, which
again cannot be computed exactly [4].

2Franzese et al. [9] and Calabrese and Elkink [6] provide extensive reviews of the spatial
probit literature, and useful comparisons among simulation-based estimation methods.
Similarly, [3] discuss a Bayesian estimation strategy for the binary temporal autoregressive
model.
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sectional data and a purely temporal model for time-series data are nested
herein. Full derivations are given in the Online Appendix.

Our analytical point of departure is a discrete-choice spatio-temporal au-
toregressive (STAR) model as the conventional latent variable formulation:

y∗it = ρ
N∑
j=1

wij,ty
∗
jt + γy∗i,t−1 + xitβ + uit (1)

or in matrix form:

y∗(N×T ) = ρWy∗ + γTy∗ + Xβ + u. (2)

Here y∗ is our latent outcome variable for which we observe realizations y,
such that yit = 1 if y∗it > 0 and yit = 0 otherwise. The spatial connectivity
matrix W captures dependency between units across space,3 T is a temporal
connectivity matrix that links the unit’s current outcomes to past realiza-
tions thereof, Xβ is a vector of covariates with corresponding parameters,
and u is an error term (zero-mean, iid, on the individual unit level). More
specifically, WNT×NT is block-diagonal with blocks of W∗

N×N for each time
period t, while T is an NT ×NT matrix full of zeros except for the identity
matrices of size N on the lower first-minor (block) diagonal. The reduced
form is:

y∗ = (I− ρW − γT)−1Xβ + (I− ρW − γT)−1u. (3)

Deriving the likelihood function requires the computation of P (y|β, ρ, γ,X),
the joint probability for the observed random variable Y given the model
parameters and regressors, which then requires the marginal CDF of the
reduced-form error term, (I − ρW − γT)−1u. This computation is analyt-
ically intractable (as long as ρ 6= 0) due to the interdependence multiplier,
(I− ρW − γT)−1 [1].4

3. A PMLE for binary spatio-temporal autoregressive (STAR)
models

To circumvent this problem, we turn to a pseudo maximum likelihood
method. We build on Smirnov’s (2010) spatial PMLE and extend it to
cases of temporal and spatio-temporal interdependence. The remainder of
the section illustrates the gist of this derivation. Here, we maintain general
mathematical expressions without assuming a specific marginal distribution

3As is convention, we row-standardize W to ensure stationarity for |ρ| < 1 [11].
4Spatial probit is a special case where the marginal probability has a closed form but

the likelihood function requires an evaluation of a multivariate normal distribution, which
again cannot be computed exactly [4].
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(e.g., logistic vs. normal). In fact, the PMLE’s feasibility regardless of the
error-term distribution is one of the strengths of this approach.5

Let ZNT×NT = (I − ρW − γT)−1 and define D as a corresponding
diagonal matrix that contains only the diagonal elements of Z, with all off-
diagonal elements being zeros. This allows us to rewrite the model reduced
form as:

y∗(NT×1) = ZXβ + (Z−D)u

higher-order effects

+ Du
zero-order effects

. (4)

Decomposing the spatial multiplier this way allows us to distinguish be-
tween zero-order and higher-order effects of an external shock as it affects
observation it. More specifically, zero-order effects capture those shocks that
the unit experiences directly. Higher-order effects are spillovers of external
shocks which are transmitted either spatially through other units’, or tem-
porally across multiple time-periods. Our decomposition aggregates across
both dimensions.

In order to allow for an analytical formulation of a (pseudo) likelihood,
we assume that higher-order effects can be “ignored”. Behaviorally, this
means that observations may simplify their choice by neglecting aggregate
spatial effects of a random shock that are experienced by other (connected)
observations. That is, mathematically, we do not expect a systematic effect
of a random shock on unit i that is carried through the off-diagonal elements
of the spatial multiplier; i.e., it does not affect the choice probability sys-
tematically. The assumption is warranted because uit are i.i.d with mean 0.
This dramatically simplifies the stochastic element of the choice probability:

P (yit = 1) = P (y∗it ≥ 0) = Fu

(∑
s

∑
j βzijsxjs

dit

)
, (5)

which is now the cdf of the univariate distribution of uit (Fu(.)), such as the
standard normal (Probit) or a standard logistic (Logit). This allows us to
write down a (pseudo) likelihood function, which is now in closed form. For
any binomial link function g(·), we have

PL(ρ, γ,β|X,y) ∝
N∏
i=1

T∏
t=1

[
g−1

(
[ZXβ]ij,s

dit

)yit [
1− g−1

(
[ZXβ]ij,s

dit

)](1−yit)
]
.

(6)
Note that this expression requires an estimate for the values for y∗i0, i.e. the
values preceding the first observed period in order to calculate the first period

5In our view, this strength goes beyond these distributions. This is useful when one
might develop an estimator, for instance, for a hybrid of a binary spatial model and
another model from a different model class such as duration and count.
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y∗i1 (see Equation 1).6 Assuming mean stationarity, we draw on Kauppi and
Saikkonen [10] and use what can be viewed as the unconditional expectation
of y∗ across all time period (and units): E[y∗] = (I−ρW−γ)−1X̄β , where
X̄ are the sample means.

4. Speeding up computation further

Naive implementations of the proposed PMLE may still be costly to
run. We further reduce the estimation costs by proposing an implemen-
tation strategy that avoids direct matrix inversion, and instead relies on a
combination of iterative gradient procedures and approximations that yield
an estimation algorithm with almost linear complexity in N . (Appendix Ap-
pendix C.1 clarifies why and how.)

5. Monte Carlo Simulations

5.1. Main results: Estimator comparisons for the binary spatio-temporal
model

We ran MCs for spatial, temporal, and spatio-temporal PMLE, compar-
ing estimates to those of alternative estimators. Here our discussion focuses
on spatio-temporal estimators. Other results are presented in the Online
Appendix. The DGP is a spatio-temporal probit as specified in (1), with
ui ∼ N(0, 1). We ran MCs for probit because most other existing tools are
for probit models.7 Throughout the experiments we set β0 to -0.5 and β1

to 1. The covariate vector x is drawn from the standard normal and the
spatial weights matrix W captures queen-neighborhoods on a square lattice
(row-standardized). We repeat the experiments for sample sizes of N ×T =
{64×4; 64×16; 256×16} with three combinations of spatial and temporal
autocorrelation: {ρ = .25 & γ = .25; ρ = .25, & γ = .5; ρ = .5 & γ = .25}.

Table E.5 summarizes the results. Overall, the PMLE recovers the pa-
rameters accurately and with reasonable precision. However, the PMLE is
overconfident in some cases, suggesting that the standard errors (obtained
via the Hessian) are too small. Less than one percent of runs do not converge
(see Tables E.8 and E.9 in the Online Appendix).

We contend that our estimator is nevertheless useful for applied re-
searchers. Unlike most existing spatial estimators, it can simultaneously
account for both spatial and temporal autocorrelation. So far, only the RIS
approach proposed by Franzese et al. [9] is able to estimate spatio-temporal
processes for binary data. However, our PMLE is several orders of magni-
tude faster: on a standard PC a single run for N × T = 64× 16 takes seven

6Because y∗ is latent, dropping the first period from the likelihood merely shifts the
problem to the next period, rather than solving it [cf. 9].

7As is in equation (B.17), our PMLEs can host other link functions if one wishes.
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seconds for the PMLE, and nearly three hours for the RIS (see Figure E.4 for
a summary of estimation times); for N ×T = 256×16 the PMLE takes nine
seconds, while we estimate the RIS to take almost two weeks if estimation
time increases linearly (not executed).

More concernedly, our experiments show that the RIS’s unbiasedness
hinges on the choice of DGP, especially as true values of γ and ρ increase
[c.f. 7, 166]. For instance, the biases are not prominent under the DGPs
chosen in Franzese et al. [9], Calabrese and Elkink [6] but they are under
the DGP we selected. (see Figure 1.)8

5.2. Other results: Estimator comparisons for the binary spatial or temporal
model

For a purely spatial DGP, we compared the Bayesian spatial probit
model proposed by LeSage [14] and implemented by Wilhelm and God-
inho de Matos [19], a linearized spatial GMM [12], RIS [9], a naive probit
with an observed spatial lag, and our PMLE. Our experiments suggest that
a Bayesian approach is preferable (see Tables E.2, E.6, Figure E.2, and Cal-
abrese and Elkink [6]). However, given its speed, PMLE potentially provides
useful starting values for the Bayesian approach. Finally, we also examined
a setup with just temporal autocorrelation, comparing the RIS and PMLE
approach. Again the PMLE outperforms the RIS (see Tables E.3, E.7 and
Figure E.3).

6. Conclusion

In this paper, we (i) introduced an analytically tractable pseudo max-
imum likelihood estimator for binary choice models that exhibit interde-
pendence across space and/or time and (ii) proposed an implementation
strategy that increases computational efficiency considerably. Our Monte
Carlo experiments demonstrate that the estimators are able to recover the
parameters of the DGP, and requires only a fraction of the computational
cost of simulation-based methods. For spatio-temporal and temporal mod-
els, the PMLE estimator outperforms the only available alternative, the
RIS implementation by [9]. By contrast, for purely spatial applications the
Bayesian approach by Beron and Vijverberg [4] appears to perform best.

However, our PMLE approach comes with one drawback: its standard
errors are potentially biased (but apparently less so than those given by the

8We were able to retrieve virtually identical RIS estimates to those presented in
Franzese et al. [9] when using their DGP and contiguity matrix (see Table E.10). More-
over, this bias is also present in our purely spatial experiments, for which several other
estimators are able to retrieve far better, if not unbiased, estimates. This provides confi-
dence that our R implementation of Franzese et al.’s (2016) Matlab code (which is a direct
translation) is correct.
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Figure 1: Distribution of γ and ρ estimates from Monte Carlo simulations for Recursive
Importance Sampler and Pseudo-Maximum-Likelihood estimator.
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RIS). In the broader context of composite maximum likelihood approaches,
Varin et al. [18] provide an extensive review of this property. In short, the
standard errors obtained via the Hessian of the PMLE tend to be under-
estimated for certain parameters. Generally speaking, the literature finds
that the bias is greater when NT is not sufficiently large compared to the
variables included in the model. Our own first-cut Monte Carlo simulations
(only with a single configuration of parameter values) indicate that this bias
can emerge especially in the standard error estimate for the spatial param-
eter ρ. One approach would be a parametric bootstrap. Another approach
would be an approximation, such as the use of a sandwich estimator. In this
realm, for PMLEs in particular, a sandwich estimator using the Godambe
information matrix appears promising [18].
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Appendix A. Binary choice models with spatial, temporal, and
spatio-temporal interdependence (Full description)

This section specifies and derives a mathematical expression of binary
choice models, for which we develop a pseudo maximum likelihood estimator
later. We do so for a model with spatial, temporal, and spatio-temporal in-
terdependence, respectively. Note that, in this specification, we try to main-
tain general mathematical expressions without assuming a specific marginal
distribution (such as logistic vs. normal). In fact, the PMLE’s estima-
tion feasibility regardless of the error-term probability distribution is one of
the strengths of this approach. In our view, this strength goes beyond the
probit-vs.-logit consideration. This can become useful when one might need
to develop an estimator, for instance, for a hybrid of a binary spatial model
and another model from a different model class such as duration and count.

Appendix A.1. Spatial interdependence

We consider the following model

y∗i = ρ
N∑
j=1

wijy
∗
j + xiβ + ui (A.1)

yi =

{
1 if y∗i > 0

0 otherwise,
(A.2)

where y∗i is a continuous latent outcome variable, wij is a spatial lag between
unit i and j indicating how closely the two units are connected in a given
space (e.g, geographical proximity, membership in the same organizations
etc.), ρ is the spatial autocorrelation parameter, xi is a 1 × k vector of
covariates with parameter vector β, and ui is a zero-mean iid error term with
fixed variance. We call this specification the binary spatial autoregressive
model (or binary spatial model as we sometimes mention interchangeably).
Note that in this specification, spatial dependence occurs on the level of the
latent (i.e. not observed) outcome y∗i . This specification follows Franzese
et al. [9], implying actors of our interest can observe or know more or less
what others’ latent characteristics are, and not only their revealed binary
actions.

It is useful to write the latent equation in matrix notation, yielding

y∗(N×1) = ρWy∗ + Xβ + u, (A.3)

where

WN×N =


0 w12 · · · w1N

w21
. . .

. . .
...

...
. . .

. . . wN−1,N

wN1 · · · wN,N−1 0

 . (A.4)
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W is commonly referred to as the spatial weights matrix. Throughout the
paper we assume that W is row-standardized. Doing so ensures that the
spatial process defined in (A.3) is stationary as long as |ρ| < 1 [11]. Given
(A.3) we can derive the reduced form as

y∗ = (I− ρW)−1Xβ + (I− ρW)−1u

= (I− ρW)−1Xβ + v,
(A.5)

where vector v contains the reduced-form error terms with non-spherical
covariance matrix structure due to the multiplier (I− ρW)−1.

The main component of the (pseudo) likelihood function of our interest
will be the joint probability for the observed random variable Y given the
model parameters and regressors. This leads to the following expression:

P (y = 1) = P (y∗i > 0)

= P
([

(I− ρW)−1Xβ
]
i
+ vi > 0

)
= P

(
vi > −

[
(I− ρW)−1Xβ

]
i

)
= 1− P

(
vi ≤ −

[
(I− ρW)−1Xβ

]
i

)
= 1− FVi

(
−
[
(I− ρW)−1Xβ

]
i

)
.

(A.6)

where [·]i indicates the i’th element of the vector [·]. FVi(·) is the marginal
CDF of the random variable Vi (the reduced form error term for unit i).

Therefore, expression FVi

(
−
[
(I− ρW)−1Xβ

]
i

)
is the marginal CDF of Vi

evaluated at −
[
(I− ρW)−1Xβ

]
i
. By definition the marginal CDF of Vi is

FVi(−[(I− ρW)−1Xβ]i)

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ −[(I−ρW)−1Xβ]i

−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

fV(s1, · · · , si, · · · , sN )ds1 · · · dsi · · · dsN ,

(A.7)
where fV(s1, · · · , sN ) is the joint PDF of the reduced-form error. The es-
timation challenge for binary choice models arises when evaluating FVi at

−
[
(I − ρW)−1Xβ

]
i

is analytically intractable (as long as ρ 6= 0) [1]. As

a consequence, direct maximum likelihood estimation of β and ρ is not al-
ways feasible. Of course, one common exception is spatial probit, where the
marginal probability has a closed-form expression.

Using this expression for the choice probability, P (y = 1), we have the
following expression that is proportional to the (pseudo) likelihood function

10



for a binary spatial autoregressive model.

L(ρ,β|X,y) =
[ N∏
i=1

P (yi = 1)yi
][ N∏

i=1

P (yi = 0)(1−yi)
]

=
[ N∏
i=1

P (yi = 1)yi
][ N∏

i=1

(
1− P (yi = 1)

)(1−yi)]
.

(A.8)

Appendix A.2. Temporal dependence

As an intermediate step toward the binary spatio-temporal model—for
which our proposed estimator would eventually be useful—we first illustrate
a binary temporal autoregressive model, where the latent outcome exhibits
a first-order temporal autoregressive process governed by the temporal au-
tocorrelation parameter γ with |γ| < 1. The structural form error term ut
is a zero-mean iid error term with fixed variance.9

y∗t = Xtβ + γy∗t−1 + ut (A.9)

yt =

{
1 if y∗t > 0

0 otherwise.
(A.10)

As it falls out of the main contribution of this paper, we are grossly
skipping over the rich time-series methods literature here and we are aware
of it. For a discussion of this class of models in a political science context,
see [3], for example.

Next, note that we can rewrite the model in matrix notation as follows
(equation(A.11)). One might argue that matrix notation of a time-series
model is not the most useful expression in terms of estimating model pa-
rameters; and yet, as a stepping stone toward the binary spatio-temporal
model, it is an analytically appealing expression.

y∗(T×1) = Xβ + γTy∗ + u, (A.11)

where T, called the temporal weights matrix, is defined as

T =


0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 . (A.12)

It is evident that this model is mathematically comparable to the binary
spatial model, the sole difference being that now we impose a weights matrix

9The following results generalize trivially to higher-order processes.
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where the first subdiagonal (all the 1’s) maps y∗t−1 to y∗t . The reduced form
of the autoregressive model is given by

y∗(T×1) = (I− γT)−1Xβ + (I− γT)−1u (A.13)

As one might see it already, this gives rise to a similar difficulties in ML
estimation as the binary spatial model described above.

Appendix A.3. Spatio-temporal interdependence

So far, we have illustrated that spatial and temporal interdependence
give rise to the same reduced form expression for the latent outcome vec-
tor y∗, and are thus all subject to the same estimation challenge when-
ever the joint probability P (y = 1) does not have a closed-form expression.
This similarity in functional form allows us to combine different dependency
structures relatively straightforwardly, yielding models exhibiting multiple
types of dependencies among observations. In the following, we consider the
binary spatio-temporal autoregressive model (STAR), which combines the
binary spatial autoregressive model with the temporal autoregressive model,
yielding a panel setup [see e.g. 9]. The binary STAR model is given by

y∗(NT×1) = Qy∗ + Xβ + u, (A.14)

where y∗ = [y∗.1, . . . , y
∗
.T ]′ and y∗.t = [y∗1t, . . . , y

∗
Nt]
′. Hence, the cross-

sectional y∗.t vectors are stacked “on top of each other”. The X matrix is
constructed analogously. Q is given by

QNT×NT = ρW∗ + γT∗, (A.15)

where W∗ is the block-diagonal panel spatial weights matrix given by

W∗ =


W 0 0 · · · 0
0 W 0 · · · 0
0 0 W · · · 0
...

...
...

. . .
...

0 0 0 · · · W

 , (A.16)

and T∗ is the panel temporal weights matrix given by

T∗ =


0 0 0 · · · 0
IN 0 0 · · · 0
0 IN 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , (A.17)

where IN is the N ×N identity matrix.
The reduced form of the spatio-temporal autoregressive model is given

by
y∗(NT×1) = (I−Q)−1Xβ + (I−Q)−1u, (A.18)

which again gives rise to the familiar complication.
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Appendix B. A pseudo maximum likelihood estimator for inter-
dependent binary outcomes (Full description)

This section describes the PMLE estimator to tackle spatial, temporal,
and spatio-temporal forms of interdependence for binary outcome data. Our
analytical point of departure is a pseudo maximum likelihood estimator
(PMLE) for binary spatially autoregressive models described in Smirnov
[15], for which the remaining computational burden amounts to inverting an
N-dimensional matrix we refer to as the “interdependence multiplier.” We
extend the PMLE to cases of temporal and spatio-temporal interdependence,
which is a tool that is so far only offered by the Franzese’ et al.’s RIS
estimator [2016]. We further reduce the estimation costs by proposing an
implementation strategy that avoids direct matrix inversion, and instead
relies on a combination of iterative gradient procedures and approximations
that yield an estimation algorithm with almost linear complexity in N . This
additional procedure we propose will be detailed separately in the following
section.

When direct ML estimation is infeasible for binary models featuring in-
terdependence of the outcome variables (due to the lack of a closed-form cdf
that goes into P (y = 1)), it is clear that we require an alternative approach.
One option is simulation. Franzese et al. [9] and Calabrese and Elkink [6]
provide extensive reviews of the spatial probit literature, and useful com-
parisons of several simulation-based estimation methods such as recursive-
importance-sampling (RIS) and Bayesian MCMC approaches (see also Cal-
abrese and Elkink [5] for cases with asymmetric link functions accommo-
dating rare events). Similarly, [3] discuss a Bayesian estimation strategy
for the binary temporal autoregressive model. However, simulation-based
approaches place a number of burdens on the researchers. First, they are
computationally intensive and it usually takes a long time to estimate them.
Estimation time can be prohibitive if researchers work with big data and do
not have access to high-performance computing clusters. Second, conver-
gence problems in MCMC simulations often require tedious hyperparameter
tuning and exacerbate the estimation-time problem. Third, and as perhaps
the most broadly relevant point, currently, applied researchers do not have
access to more than the most basic tools, for example, cross-sectional spatial
probit estimators. For these reasons, we now introduce a pseudo maximum
likelihood (PML) method as a feasible way to reduce estimation time, min-
imize convergence problems, and enable applied researchers to run models
that more clearly address their research problems. Our estimator builds
on Smirnov’s [2010] spatial PML estimator and extends it to temporal and
spatio-temporal interdependence.
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Appendix B.1. PMLE for the binary spatial model

Recall the reduced form for the binary spatial model is given by

y∗ = (I− ρW)−1Xβ + (I− ρW)−1u

= (I− ρW)−1Xβ + v.
(B.1)

Denote the spatial multiplier by Z,

Z(N×N) = (I− ρW)−1, (B.2)

and, by D, an N ×N matrix that contains diagonal elements of Z. All off-
diagonal elements of D are zero. The spatial multiplier indicates the degree
of local and global spillovers of an exogenous shock that unit i receives [2];

in other words, zij =
∂y∗i
∂uj

, where zij is the ijth element of Z. The diagonal

matrix D indicates “private effects,” borrowing Smirnov’s (2010) term, of
exogenous shocks on the individual latent outcomes. The relative effect
captured by D is “private” in that it indicates the magnitude of the effect
that unit i receives from an exogenous shock that occurred to unit i itself;

in other words, di =
∂y∗i
∂ui

.
On the other hand, the off-diagonal elements of Z, i.e. Z−D, represent

“aggregate spatial effects” of an exogenous shock. Note that all diagonal
elements of Z−D are zero. One could interpret it as an aggregate spillover
effects that unit i receives from an exogenous shock through all the other
units.

The reduced form can now be re-written as

y∗(N×1) = ZXβ + (Z−D)u

“Social effects”

+ Du
“Private effects”

, (B.3)

or, for each unit i,

y∗i =
∑
j

βzijxj +
∑
j

[Z−D]ijuj + diui. (B.4)

We can now rewrite the probability of unit i seeing a positive outcome as

P (yi = 1) = P (y∗i ≥ 0)

= P (
∑
j

βzijxj +
∑
j

[Z−D]ijuj + diui ≥ 0)

= P

(
ui ≤

∑
j βzijxj

di
+

∑
j [Z−D]ijuj

di

)
.

(B.5)

Note that there is a stochastic element left in the argument of the prob-
ability in the above expression:

∑
j [Z − D]ijuj . In order to allow for an

analytical formulation of a (pseudo) likelihood, we assume that higher-order
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effects can be “ignored”. Behaviorally, this means that observations may
simplify their choice by not worrying about aggregate spatial effects of a
random shock that are experienced by other (connected) observations. That
is, mathematically, we do not expect a systematic effect of a random shock
on unit i that is carried through the off-diagonal elements of the spatial
multiplier; i.e., it does not affect the choice probability systematically. The
assumption is warranted because uit are i.i.d with mean 0. Smirnov’s (2010)
key proposal is to approximate

∑
j [Z −D]ijuj in (B.5) by its expectation,

i.e., zero. This step simplifies the likelihood function. To see why, note that
P (yit = 1) can now be written as follows:

P (yi = 1) = P (y∗i ≥ 0)

= P

(
ui ≤

∑
j βzijxj

di

)
= Fu

(∑
j βzijxj

di

)
,

(B.6)

where Fu(.) is the cdf of the univariate distribution of ui, which is typi-
cally the standard normal (yielding a Probit model) or a standard logistic
(yielding a Logit model).

With this approximation, we can write the pseudo likelihood in closed
form. If ui follows the standard logistic distribution, for instance, we have

PL(ρ,β|X,y) =

[
N∏
P (yi = 1)yi

][
N∏

(1− P (yi = 1))(1−yi)

]

∝

[(
N∏ exp ((

∑
j βzijxj)/di)

1 + exp ((
∑

j βz
yi
ij xj)/di)

)yi]

×

( N∏ 1

1 + exp ((
∑

j βzijxj)/di)

)(1−yi)
 .

(B.7)

Appendix B.2. PMLE for the temporal autoregressive model

Recall the reduced form for the binary temporal autoregressive model,
given by

y∗(T×1) = (I− γT)−1Xβ + (I− γT)−1u. (B.8)

Next, let
Z(T×T ) = (I− γT)−1, (B.9)

denote the dependency multiplier. Applying the logic of the previous section,
we can decompose the reduced-form error term into two parts

y∗ = ZXβ + Zu

= ZXβ + (Z−D)u

distributed

+ Du
contemporaneous

. (B.10)
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The distributed effect captures the effect of exogenous shocks that occurred
in the past and were carried over to the outcome of time t. These are
distributed because this term focuses on the effect that is carried across
multiple time periods (“neighbors” in time). On the other hand, the con-
temporaneous effects capture the effect of an exogenous shock that occurred
in the current time period on the current outcome. Note that due to the
lower-diagonal structure of T, D = I, and thus di = 1. Again substituting
(Z−D)u with its expectation and given that u is i.i.d., we arrive at the
following expression for the probability of a positive outcome:

Pr(yt = 1)

= Pr(y∗t > 0)

= Pr (ut < [ZXβ]t) ,

(B.11)

and the pseudo likelihood function, for instance with a logit link function,
is given by

PL(γ,β|X,y) =

[
T∏
P (yt = 1)yt

][
T∏

(1− P (yt = 1))(1−yt)

]

∝

[(
T∏

1− 1

1 + exp (−[ZXβ]t/dt)

)yt]

×

( T∏ 1

1 + exp (−[ZXβ]t/dt)

)(1−yt)
 .

(B.12)

Appendix B.3. PMLE for the spatio-temporal autoregressive model

Similarly to the above model, recall the reduced form:

y∗(NT×1) = (I−Q)−1Xβ + (I−Q)−1u. (B.13)

We denote the spatio-temporal multiplier (I−Q)−1 again as Z(NT×NT )

and define the matrix DNT×NT as a matrix that captures the diagonal
elements of Z with all other elements being zeros.

y∗(NT×1) = ZXβ + Zu

= ZXβ + (Z−D)u

higher-order effects

+ Du
zero-order effects

. (B.14)

Substituting (Z−D)u with its expectation, we arrive at the following
expression for the probability of a positive outcome:

Pr(yit = 1)

= Pr(y∗it > 0)

= Pr (uit < [ZXβ]it)

(B.15)
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and the pseudo likelihood function again with a logit link function, is given
by

PL(ρ, γ,β|X,y) =

[
N∏ T∏

P (yit = 1)yit

][
N∏ T∏

(1− P (yit = 1))(1−yit)

]

∝

[(
N∏ T∏

1− 1

1 + exp (−[ZXβ]ij,t/dit)

)yit]

×

( N∏ T∏ 1

1 + exp (−[ZXβ]ij,t/dit)

)(1−yit)
 .

(B.16)
Alternatively, for any binomial link function g(·), we have

PL(ρ, γ,β|X,y) ∝
N∏
i=1

T∏
t=1

[
g−1

(
[ZXβ]ij,s

dit

)yit [
1− g−1

(
[ZXβ]ij,s

dit

)](1−yit)
]
.

(B.17)
Note that this expression requires an estimate for the values for y∗i0, i.e. the
values preceding the first observed period in order to calculate the first period
y∗i1.10 Assuming mean stationarity, we draw on Kauppi and Saikkonen [10]
and use what can be viewed as the unconditional expectation of y∗ across
all time period (and units): E[y∗] = (I − ρW − γ)−1X̄β , where X̄ are the
sample means.

Appendix C. Speeding up computation further

Appendix C.1. Why still costly...

In the previous section, we have derived pseudo likelihood functions for
binary (inter-)dependence models that can be evaluated directly, thus per-
mitting a pseudo maximum likelihood (PML) strategy that does not require
simulation. However, naive implementations of the proposed PML estima-
tor may still be prohibitively costly to run. To see why, let us assume that
we attempt to fit a model on data covering N units over T periods with
reduced form

y∗NT×NT = ZXβ + Zu, (C.1)

where Z = A−1 = (I −Q)−1. This specification yields a pseudo likelihood
function consisting of NT terms of the following form

P (yj = 1) = P (y∗j ≥ 0)

= Fu

(
µj
dj

)
,

(C.2)

10Because y∗ is latent, dropping the first period from the likelihood merely shifts the
problem to the next period, rather than solving it [cf. 9].
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with j ∈ {1, 2, . . . , NT}, µ = ZXβ, and dj = Zjj . Perhaps the most
straightforward implementation of expression (C.2) is to invert A directly
using a decomposition-based solver, then multiplying Z with Xβ to yield
µ, and dividing by diag(Z). However, this strategy is typically very slow,
as most decomposition-based solvers operate with near cubic time complex-
ity. Instead, we propose a strategy that avoids the full inversion of A, but
computes µ and d separately.

Appendix C.2. Computing µ

To compute µ we solve the linear system Aµ = Xβ for µ using an
iterative method. In particular, we propose using the Biconjugate gradi-
ent stabilized method (Bi-CGSTAB), which yields similar performance to
the more widely known conjugate gradient method, but is applicable even
if A is not symmetric [17]. Doing so yields a substantial speed-up over
decomposition-based solvers, especially when A is sparse, which will be the
case as long as any spatial weights matrices entering A are neighborhood
based.11

If A is block-diagonal, which is the case for all panel models that do not
feature a temporal autoregressive term, then we can make use of the fact
that the inverse of a block-diagonal matrix is the block diagonal matrix of
block-wise inverses. In other words, instead of solving the full system, we
can solve Atµt = Xtβ for all t ∈ {1, 2, . . . T}, whereas At represents a block
in A.

Appendix C.3. Computing d

First, we note that for panel models, d can always be computed in a
period-wise fashion. This is obviously the case if Q does not include the
panel temporal weights matrix T∗, because then A is block-diagonal, and
thus d is the concatenation of the period-wise diagonals dt = diag((At)

−1).
Crucially, however, d can be computed analogously even if Q does include
T∗, and thus A is not block-diagonal. In the following, we provide a theorem
to this end for the case where Q represents a spatial weights matrix; we note,
however, that the results extends to the case where Q represents a panel
outcome weights matrix (i.e. an M∗ term), or a mixture of the two.

Theorem Appendix C.1. Let W∗ be a NT × NT block-diagonal panel
spatial matrix as defined in (A.16), and T∗ be the panel temporal weights
matrix as defined in (A.17). Then d = diag((I−γT∗−ρW∗)−1) = diag((I−
ρW∗)−1).

11Note that the weights matrices for temporal dependence (A) and outcome-
interdependence (M) are sparse by construction.
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Define a strictly lower block triangular (SLBT) matrix as any square
matrix with the following structure

0N 0
0N

. . .

6= 0
0N

0N

 ,

whereas 0N is the N×N matrix of zeros. It follows that γT∗ is SLBT. Note
that (I− γT∗ − ρW∗)−1 can be written as a Neumann series [13, ch. 2]:

(I− γT∗ − ρW∗)−1 = I +
L∑
l=1

(γT∗ + ρW∗)l (C.3)

= I + (γT∗ + ρW∗)

+ (γ2T∗2 + γρT∗W∗ + γρW∗T∗ + ρ2W∗2)

+ . . .

Note that the product of two SLBT matrices is SLBT. Further note that the
product of an SLBT matrix with a block-diagonal (BD) matrix is SLBT,
regardless of the order of multiplication. It follows that the only terms in
(C.3) with non-zero diagonals are of the form ρlW∗l for l > 1. Thus,

diag((I− γT∗ − ρW∗)−1) = diag(I) +

L∑
l=1

diag((γT∗ + ρW∗)l)

= diag(I) +
L∑
l=1

diag((ρW∗)l)

= diag((I− ρW∗)−1).

Thanks to the above theorem, we now only need an efficient method for
calculating dt = diag((At)

−1). Here we propose two approaches. The first
(preferred) one applies whenever At is composed of only a single weights
parameter and weights matrix, e.g. At = I− ρW or At = I− λM. In this
case, we make use of the fact that (At)

−1 can be written as a Neumann
series, e.g. for the spatial case

(At)
−1 = I +

∞∑
l=1

(ρW)l. (C.4)

Thus, an approximation for dt may be obtained via

dt ≈ d̃t = diag(I) +

L∑
l=1

diag
(
ρlWl

)
, (C.5)
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with L suitably large; we use L = 8. Note that we can precompute the
series {W,W2, . . . ,WL} prior to optimization. Thus, the time complexity
of evaluating d̃t during optimization is linear in N .

The second approach for computing dt comes into play when At is com-
posed of multiple weights matrices and parameters, as for instance in the
binary simultaneous equation spatial model discussed in Section Appendix
A.3. In this case, we use the method of [16], and examined by [8], which
relies on a recursive algorithm to calculate the diagonal of a matrix inverse.
Importantly, using the Takahashi equations to calculate dt is considerably
faster than computing the full decomposition-based inverse if At is sparse,
which will generally be the case as long as any spatial weights matrices
entering into At are neighborhood-based.

Appendix D. Evaluation and comparison of estimation strategies

In the remainder of the Online Appendix, we present all the MC simula-
tions referred to in the main text. In all cases, we compare the performance
of our estimator to that of some well-recognized alternatives.

Appendix E. Notes on replication material

Tables A3 & A4 compare the spatio-temporal estimation results when
using different approximations for y∗ for the initial period. Table A4 is
equivalent to Table 1 reported in the main paper, and we recommend using
this estimation procedure. Replication results for Table A3 are available on
request.

Further note that our replication material does not replicate Figure A3,
which demonstrates estimation times. Unless the code is rerun on exactly
the same hardware setup, estimation times will obviously differ.
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Table E.6: Summary statistics for ρ parameter in common spatial probit estimators from
500 Monte Carlo iterations (100 iterations for RIS with N=1,024).

ρ = 0 ρ = 0.25 ρ = 0.5
N 256 1,024 4,096 256 1,024 4,096 256 1,024 4,096

Bayes Mean Bias 0.154 0.075 0.038 0.139 0.062 0.032 0.111 0.050 0.025
RMSE 0.197 0.094 0.048 0.183 0.080 0.040 0.149 0.064 0.030
Overconfidence 1.002 0.985 1.026 1.062 0.974 1.005 1.011 0.955 0.931
Non-convergence 0 0 0 0 0 0 0 0 0

GMM Mean Bias 0.205 0.098 0.185 0.088 0.135 0.070
RMSE 0.267 0.122 0.243 0.110 0.188 0.088
Overconfidence 1.065 0.960 1.160 1.060 1.009 1.072
Non-convergence 0 0 2 0 76 16

Naive Mean Bias 0.548 0.278 0.139 0.712 0.626 0.654 1.405 1.465 1.493
Probit RMSE 0.692 0.345 0.176 0.849 0.694 0.673 1.532 1.496 1.500

Overconfidence 1.271 1.279 1.311 1.275 1.210 1.219 1.188 1.106 1.087
Non-convergence 0 0 0 0 0 0 0 0 0

RIS Mean Bias 0.099 0.046 0.147 0.121 0.255 0.229
RMSE 0.129 0.057 0.182 0.131 0.280 0.236
Overconfidence 3.141 1.468 5.051 4.213 10.756 12.421
Non-convergence 0 0 0 0 0 0

SPMLE Mean Bias 0.205 0.097 0.051 0.183 0.086 0.045 0.139 0.069 0.036
RMSE 0.269 0.122 0.065 0.244 0.108 0.056 0.188 0.089 0.046
Overconfidence 1.080 0.954 1.007 1.178 1.060 1.090 1.223 1.209 1.251
Non-convergence 1 1 0 0 1 5 3 6 10
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Figure E.2: Distribution of ρ estimates from Monte Carlo simulations for Bayes, GMM,
MLE, RIS, and PMLE estimator.
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Figure E.3: Distribution of γ estimates from Monte Carlo simulations for RIS and PMLE
estimator.
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Table E.10: Replication of Franzese et al.’s (2016) simulation results for spatio-temporal
RIS (100 iterations). The experiments here use the DGP (incl. W) of Franzese et al.
(2016). The implementation code is the authors’ own—a direct translation of the original
MATLAB code to our own R code.

β0 = −1.5 β1 = 3 ρ γ

Experiment #1: ρ = 0.1, γ = 0.3
Mean Coefficient Estimate -1.434 2.859 0.088 0.270
Bias 0.115 0.219 0.037 0.032
RMSE 0.145 0.263 0.045 0.038
Actual SD of estimates 0.130 0.224 0.043 0.022

Experiment #2: ρ = 0.1, γ = 0.5
Mean Coefficient Estimate -1.270 2.487 0.070 0.448
Bias 0.239 0.523 0.060 0.053
RMSE 0.277 0.601 0.107 0.061
Actual SD of estimates 0.156 0.316 0.104 0.033

Experiment #3: ρ = 0.25, γ = 0.3
Mean Coefficient Estimate -1.401 2.798 0.220 0.274
Bias 0.122 0.232 0.042 0.029
RMSE 0.152 0.283 0.051 0.035
Actual SD of estimates 0.116 0.199 0.041 0.023

Experiment #4: ρ = 0.25, γ = 0.5
Mean Coefficient Estimate -1.190 2.374 0.231 0.456
Bias 0.320 0.639 0.046 0.048
RMSE 0.373 0.747 0.064 0.062
Actual SD of estimates 0.209 0.409 0.061 0.044
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Figure E.4: Mean Estimation Times for Spatial, Temporal and Spatio-Temporal Estima-
tors
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